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1. Introduction

Near-infrared (NIR) spectroscopy is a fast, non-invasive tech-
nique that has been demonstrated useful for pharmaceutical
analysis of powder mixtures, granules, roller compacts, tablets and
capsules without sample preparation [1]. Both chemical and phys-
ical information contained in the spectrum can be extracted via
multivariate modeling. Monitoring of blending homogeneity is an
important application of NIR spectroscopy. While traditional blend-
ing analysis including thief sampling and UV method considers only
the active ingredient in a blend. NIR analyses allow consideration
of all blend constituents simultaneously. Since most pharmaceuti-
cal active ingredients and excipients have unique NIR absorption
spectra, multivariate techniques are used to resolve NIR spectra to
predict concentration variation of all mixture components.
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utilize near-infrared (NIR) spectroscopy to characterize powder blending
based approach was used to determine end-point and variability at the
s. Two monitoring positions for NIR spectrometers were evaluated; one
Bin-blender and the other was on the rotation axis. A ternary powder

hen (APAP, fine and coarse powder), lactose (LAC) and microcrystalline
200) was used as a test system. A Plackett–Burman design of experiments
arameters and compositions was utilized to compare the robustness of
een the multivariate model-based algorithm and reference algorithms.
lgorithm, including root mean square from nominal value (RMSNV) and
developed based on PLS predicted concentrations of all three constituents.
f RMSNV after end-point were used to characterize blending variability at
-point and variability of two sensors were also compared. The multivariate
to be more robust on end-point determination compared to the reference

at the two sensor locations demonstrated a significant difference in terms
iability, indicating the advantage to employ process monitoring via NIR
location on the Bin-blender.

© 2008 Elsevier B.V. All rights reserved.

The interface of near-infrared spectroscopy to the blending

process has included methods such as analysis of off-lines sam-
ples collected from a blender, and on-line or in-line real-time
monitoring of powder mixing [2]. Following the collection of blend-
ing spectra, various qualitative and quantitative blend monitoring
metrics have been used. Qualitative spectral analysis approaches
include dissimilarity [3], Euclidean distance [3], mean square dif-
ference [4], moving-window standard deviation (MVSD) [5–7],
PCA [3,6,8], SIMPLISMA [3], SIMCA [6,9], bootstrap algorithms and
Chi-square analysis [9,10]. These approaches are based on calcula-
tion of spectral variance or multi-dimensional spectrum distance
between continuous spectra or between target spectra of “ideal
mixture” and individual spectra collected during the blending pro-
cess. Quantitative approaches require a calibration model (e.g.
PLS) to capture the concentration variation during the blending
process [11–17]. Compared to quantitative approaches, qualitative
approaches require less data and are therefore more suitable for
early process development stages. However, a quantitative model
is able to express blending processes in terms of concentration
variation, which is comparable to the standard criteria of cur-
rent regulatory requirements. While it is frequently argued that
the concentration variation is implicit in qualitative methods, the

http://www.sciencedirect.com/science/journal/07317085
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dx.doi.org/10.1016/j.jpba.2008.03.013
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128L-1.7T-USB, Control Development, South Bend, IN) connected
with an optic fiber, referred to as the side sensor, was inserted
through a Teflon probe guide in front of the anti-reflection coated
window. The side sensor had 400-�m spot size and 6.25-nm
step-size. Another NIR spectrometer with wireless data collection
(BM-1000, Control Development, South Bend, IN), named the top
sensor, was mounted onto the top of the blender, where a cylin-
drical sample probe head (about 25-mm circular sensing area)
protruded 5.53 cm (length) × 8.20 cm (diameter) into the blender.
The dimension of the sensor was 37.97 cm × 20.06 cm × 17.14 cm.
The top sensor was characterized by 3.125-nm step-size. It was
reported that depth of penetration of NIR radiation in pharmaceu-
tical powder was about 500 �m [20]. If a cylinder interrogation
volume was assumed as reported, the volumes were 0.063 mm3

and 245.44 mm3 for side and top sensor, respectively. Taking into
account of density of powder mixture, the calculated sample sizes
for both sensors were well below the maximum allowed sample
mass by FDA about 0.3–3 g [21]. Since the blender was 80% filled,
powder was constantly in front of both spectrometers and spectra
were collected continuously without rejection. A schematic dia-
gram of the instrument can be found in Fig. 1. In order to capture
Z. Shi et al. / Journal of Pharmaceutical

expression of variation is explicit in quantitative methods due to
the specificity of a calibration model for a particular concentration
variation. So far few reports compare the two methods directly, par-
ticularly with respect to robustness. Thus, a robustness comparison
was performed in the paper between the multivariate model-based
approach and widely used qualitative algorithms, moving win-
dow standard deviation (MVSD). Additionally, when a multivariate
model is established for a powder blending unit operation, mainte-
nance of model performance is an important issue. Thus, the effects
of model performances on its monitoring capacity also require
investigation.

It is well established that instability of a homogenous mixture
can cause demixing or segregation after an end-point is reached,
which can further lead to the problem of content non-uniformity
[18]. An ideal powder blending process should be optimized
for both homogeneity at unit-dose scale and stability (smallest
variability) after end-point is reached. While most blending inves-
tigations focus on end-point determination, blending stability after
end-point is seldom studied. Therefore, monitoring powder blend-
ing in terms of both end-point and blending variability warrants
investigation.

In an early blending study by Sekulic et al. [5], a single optic
fiber was inserted into the rotation axis of a V-blender to on-line
measure the spectral variation with respect to time. But questions
were posed as to whether a single fiber-optic probe is sufficient to
represent overall concentration variation within the blender. More
recently, it has been reported that multiple spectral sampling points
in a V-blender are essential for accurate and precise estimation
of end-points [7]. Due to differences in blending mechanisms and
efficiencies between Bin- and V-blenders, it is necessary to evalu-
ate the relationship between NIR sensor positioning and end-point
determination in Bin-blenders.

The aim of this paper is to use a high rate of spectra collec-
tion to monitor in-line powder blending based on two NIR sensors
positioned at the top and rotational axis of a Bin-blender. Blending
end-point was determined based on a multivariate model-
based statistical analysis of concentration variation with time. A
Plackett–Burman design of experiment was utilized to compare the
robustness of end-point determination between the proposed algo-
rithm and the widely employed end-point determination metrics.
The effects of model performance on end-point determination were
investigated by adjusting the number of principle components
(PCs), the slope and bias of prediction. After end-point determi-
nation, blending variability was characterized. The relationship

between the position of NIR sensors and their capacity to monitor
blending end-point and variability was also explored.

2. Materials and methods

2.1. Material

A ternary powder mixture was used, including: lactose (Fore-
most Farm USA, Rothschild, WI), Avicel (PH 101 and 200,
FMC Biopolymer, Mechanicsburg, PA) and acetaminophen fine
(Mallinckrodt Inc., Raleigh, NC) and coarse powder (Rhodia
Organique, Cedex, France). The reported median particle size for the
above components can be found in Table 1. All powder materials
were used as received.

2.2. Blending

A stainless-steel 5.5-L Bin-blender with cylindrical top and cone
bottom (L.B. Bohle, Germany) was used for all blending studies.
The dimensions of the blender were 30.48 cm (height) × 20.32 cm
iomedical Analysis 47 (2008) 738–745 739

(diameter of the top). Powders were loaded into the blender in the
following order: lactose (LAC) first, followed by microcrystalline
cellulose (MCC) and acetaminophen (APAP). The actual loading
amount for each component was listed in Table 1. The blender
was filled with powders to 80% (v/v) of the working capacity as
a common industrial practice [19].

The blending composition and process condition were gen-
erated using a Plackett–Burman design (Table 1). In total, five
variables were in the design matrix, including: APAP concentra-
tion, ratio of MCC/LAC, blending speed, APAP type and MCC type,
respectively. Each design point was performed in triplicate exper-
iments. Adequate variance was generated by the design matrix to
demonstrate not only the capability of NIR spectroscopy in mon-
itoring a variety of blending processes, but also the robustness of
end-point determination methods.

2.3. Near-infrared spectroscopy

An anti-reflection coated window (10BW20-30, Newport,
Mountain View, CA) was mounted onto the side wall of the blender,
pointing towards the rotational axis. An NIR spectrometer (NIR-
Fig. 1. Scheme of Bin-blender and two sensors. (1) Bin-blender; (2) rotation axis;
(3) anti-reflection coated window; (4) Teflon probe guide; (5) fiber optics; (6) side
sensor; (7) sample probe head; (8) top sensor.
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Table 1
Plackett–Burman design matrix

Run # APAP (w/w) Ratio of MCC/LACa Blending speed (rpm)

1 0.15 2 25
2 0.05 2 15
3 0.15 0.5 15
4 0.05 0.5 25
5 0.15 2 25
6 0.05 2 15
7 0.15 0.5 15
8 0.05 0.5 25

a The reported median particle size for lactose was 100 �m.
b The reported median particle size was 250 �m for APAP coarse powder and 100
c The reported median particle size was 180 �m for MCC PH200 and 50 �m for M

blending variability, spectra were collected at a rate of 5 s/spectra.
This rate is significantly faster than the expected rate of change of
the process; however, it is necessary to characterize the variability
that changes on a time scale comparable to the stated collection
rate. Each blending run was monitored for 90 min. The wavelength
range was 911–1680 nm, with a 4-nm step size for a total of 193
variables.

In the above experimental setting, the probe head of the top
sensor protruded into the Bin-blender due to the design of the sen-
sor. While, certain disturbances could be expected, all blends were
subjected to the same condition. Therefore, the robustness compar-
ison among end-point determination algorithms and comparison
between two sensors are reasonable.

2.4. Analysis of spectra

All spectral data were processed and analyzed in MATLAB (v7.1,
The MathWorks, Natick, MA) using the PLS Toolbox (v3.0, Eigenvec-
tor Research, Manson, WA) along with analysis routines developed
in-house.

2.4.1. Comparison of end-point determination
Due to the better resolution, higher signal to noise ratio and

larger interrogation volume of the top sensor, only data collected
from top sensor were used for comparing robustness of end-point
determination by different algorithms.

2.4.1.1. End-point determined by the multivariate model-based algo-
rithm.
2.4.1.1.1. NIPLS calibration model. Non-linear iterative partial
least square (NIPLS) was applied to establish a calibration model
between the last 200 spectra of every blending run and corre-
sponding nominal concentration of three components according
to the design matrix. Because there were a total of 24 runs,
the final spectral calibration data set (X) was 4800 × 193 and
concentration data (Y) was 4800 × 3. Savitzky–Golay smooth-
ing and derivative (window size = 15, 2nd polynomial order,
2nd derivative) and mean-centering were used as data pre-
treatments. Batch-wise cross validation was performed in order
to select the optimal number of principle component. Batch
was represented by one single blending run. After model cali-
bration, concentrations of three components of each spectrum
were predicted and the concentration–time profile for each
blending experiment was plotted. Based on principle compo-
nent analysis, two blending runs were regarded as outliners
due to its dramatic trend difference compared to its replicates.
The remaining 22 runs were used for further data analy-
sis.

2.4.1.1.2. Root mean square from nominal value (RMSNV). Pre-
dicted and nominal concentrations were used to calculate root
iomedical Analysis 47 (2008) 738–745

PAP typeb MCC typec Lactose (g) MCC (g) APAP (g)

oarse powder 200 623.33 1246.67 330
oarse powder 101 538.34 1076.66 85
oarse powder 200 1382.67 691.33 366
oarse powder 101 1329.99 665.01 105
ine powder 101 470.33 940.67 249
ine powder 200 646.01 1291.99 102
ine powder 101 1110.67 555.33 294
ine powder 200 1456.66 728.34 115

or APAP fine powder.
101.

mean square from nominal value for each blending experiment
according to the following equation:

RMSNV=
√

(PAPAP−NAPAP)2+(PLAC−NLAC)2+(PMCC−NMCC)2

3
(1)

where P is the predicted concentration for each component at a
single sensor position and N is the nominal concentration for each
component.

2.4.1.1.3. Student’s t-test. A Student’s t-test (two-tailed) was
performed between every 12 RMSNV points (1 min interval) and
zero. Confidence interval (CI, 95%) was calculated and plotted with
respect to time. The end-point was regarded as the time-point at
which the upper CI deviates less than 12% from nominal, and the
lower CI deviates less than 2% from nominal.

2.4.1.2. End-point determined by API predicted concentration profile.
The same NIPLS model as 2.4.1.1.1 was established to predict API
concentrations. After API concentrations were plotted against time,
relative standard deviation (R.S.D.) of every three continuously pre-
dicted concentrations was calculated. Due to the high rate of spectra
collection, another window of nine was used to smooth the trend
of R.S.D. The end-point was reached when R.S.D. was smaller than
5%, according to FDA guidance on blending [22].

2.4.1.3. End-point determined by moving-window standard devia-

tion. Spectra were preprocessed by standard normal variate before
end-point determination. Based on previous algorithms [5–7], the
standard deviation (S.D.) at an individual wavelength was calcu-
lated using a window of three consecutive spectra; mean value
of S.D. across the whole wavelength range was then calculated
to represent the spectral variation within the time window; each
successive value was determined by shifting the window (in time)
by one sample until all acquired spectra were utilized. Due to the
high rate of spectra collection, another window of nine was used to
smooth the trend of mean S.D. The first zero-crossing point of the
first derivative of the smoothed mean S.D. trend was regarded as
the end-point of mixing.

2.4.2. The effect of model performance on end-point
determination

Due to the better performances of top sensor, only data collected
from the top sensor were used here. The effect of model perfor-
mance parameters on end-point determination was investigated by
adjusting the number of PCs, slope and bias deviation of prediction.
Slope and bias deviation of ±20%, ±10% and ±5% were performed.
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Fig. 2. Comparison among regression vectors, pure component spectra and example
spectra collected at the end of blending process. (A) Preprocessed spectra collected
at the end of blending process. (B–D) Regression vectors and preprocessed pure
component spectra for APAP, LAC and MCC. Solid lines represented the regression
vectors, dotted lines represented pure component spectra after second-derivative
pre-treatment.
Z. Shi et al. / Journal of Pharmaceutical

2.4.3. End-point determination and blending variability
characterization by two sensors

The similar end-point determination protocol was performed
except for the following modifications. Due to the discrepancy of
measurement error on different blending runs by different sensors,
RMSNV was rescaled by subtracting individual pure error for each
blending run by each sensor. Measurement error was calculated
using the following equation:

PE =

√∑200

i=1
(CAPI − C̄API)

2 +
∑200

i=1
(CLAC−C̄LAC)

2 +
∑200

i=1
(CMCC−C̄MCC)

2

200 × 3
(2)

where PE is the pure error of concentration prediction on single
blending run by single sensor, C the individual predicted concen-
tration among the last 200 spectra at the end of blending process
and C̄ is the mean predicted concentration of last 200 spectra at the
end of blending process.

After pure error of each sensor on each blending run was
removed, a Student’s t-test (two-tailed) was performed as before
followed by calculation of 95% CI. Due to the subtraction of pure
error from RMSNV, RMSNV at certain time points showed negative
values. Thus, the end-point determination criteria was modifies as
follows: for the top sensor, end-point was determined as the point
at which the upper and lower CIs deviated less than 5 and −5% from
nominal, respectively. For the side sensor, the end-point was deter-
mined to be the point at which the upper and lower CIs deviated
less than 15 and −5% from nominal, respectively. After end-point
was measured, 120 RMSNV points (10 min interval) after end-point
were chosen to calculate the mean and standard deviation, repre-
senting the blending variability at the end-point.

3. Results and discussion

Partial least squares (PLS) is a mathematical method that is capa-
ble of describing the covariance between multidimensional NIR

spectral data and response variables by means of a small number of
non-intercorrelated variables or principal components. Non-linear
iterative partial least squares is a standard algorithm for computing
PLS regression components, which can be used for both univariate
and multivariate Y data. The information of NIPLS models for top
sensor was as follows: four principle components, 97.65% of X and
93.97% of Y variance were captured. Savitzky–Golay smoothing and
second derivative (SG) was chosen as a preprocessing technique to
correct the baseline of spectra. The baseline correction is expected
to suppress physical interference and therefore enhance chemi-
cal information. The advantages of using SG was demonstrated
by the lower RMSEC and RMSECV using smaller number of prin-
ciple components compared to other preprocessing techniques in
Table 2. The spectral similarity between regression vectors and pure
components indicated the specificity of PLS model on capturing
concentration variation of individual component (Fig. 2).

A representative PLS predicted concentration plot during a
blending run is shown in Fig. 3. It was observed that a longer blend-
ing time was required for LAC and MCC to reach their target values
compared to APAP. It is well understood that the physical and chem-
ical properties of blend constituents substantially affect the time

Table 2
Calibration statistics for NIPLS model

PCs RMSEC (%, w/w) RMSECV (%, w/w)

SG 4 2.82 3.09

SNV
4 4.10 4.76
5 2.69 3.08

Detrend 5 4.34 5.08

Fig. 3. Example predicted concentration plot for a representative run based on the
top sensor. The nominal value for each component (w/w) was as follows: MCC (63.3%,
top), lactose (31.7%, middle) and APAP (5%, bottom). The solid lines represent the
nominal values for each component.
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to increase when the excipients are designed to play significant
roles controlling the in vitro and in vivo drug release. In that case,
monitoring powder blending process can become initiative to con-
trol drug release profile. Another example is to add more weight to
API (increase WAPI) to account for low-dose formulations in order
to monitor strictly API blending profiles. Thus, the RMSNV calcu-
lation allows freedom to adjust process control strategies via the
weight according to different requirements of the manufacturing
process and final dosage form.

RMSNV=

√
WAPAP(PAPAP − NAPAP)2 + WLAC(PLAC − NLAC)2 + WMCC(PMCC − NMCC)2

WAPAP + WLAC + WMCC

(3)

where W is the relative weight of constituents.
Monitoring the collapse of the CI to the 2–12% deviation level is

equivalent to performing a Student’s t-test. The advantage of a Stu-
dent’s t-test is that it captures the end-point based on mean value
(closeness to zero) and variance at the inflection point of RMSNV
742 Z. Shi et al. / Journal of Pharmaceutical

required to distribute these components throughout a blend. In
this particular example, the model API was distributed relatively
quickly, while the excipients required a longer time to reach the
target concentrations. This specific example highlights the neces-
sity of monitoring not only API, but excipients as well. A blend such
as this would have been considered homogenous prior to the final
mixing of the excipients if only the API were monitored. If such a
blend were allowed to proceed through subsequent pharmaceuti-
cal unit operations, a substantial variability would be introduced to
the resulting finished product.

Concentration prediction for individual constituents at the end
of blending process had different variances. These fluctuations
were observed when the target concentration was reached (Fig. 3).
Variance observed can be attributed to two factors. First, predic-
tion errors contributed to the variability (the reason for removing
pure error when two sensors were compared later). Second, more
importantly, variability in constituent concentration at the sensing
window should be expected to occur and is expected to explain a
significant portion of the observed fluctuations. The inherent vari-
ability of the blending process is the driving force for applying
the Student’s t-test to RMSNV calculations; as, the Student’s t-test
takes into account of absolute deviation between current and target
concentrations and variance of current blending profile.

The concentration profiles from the PLS predictions directly rep-
resent the concentration of materials at the sampling point through
time. An estimated end-point can be determined by observation of
these results. However, a more robust metric is necessary for in-line
process monitoring in order to determine end-point mathemati-
cally and stop blending rotation automatically. An ideal method
would include sensitivity to target concentrations for the blend,
characteristic concentration variability at end-point, continuity of
measurements and predicted blend status immediately following
blend end-point. Further, the metric must express these charac-
teristics in a single value. A sensitivity to target concentrations
assures that the blend has achieved not just self-consistency, but an
agreement with the required level of each constituent. Constituent
variability at the end-point should be relatively consistent from
blend to blend. A lack of consistency among blends as measured by
the blend variability at the end-point is indicative of changes in the
properties of the materials. The requirement of consistency after
blend end-point is meant to assure that a blend will not oscillate
between “blended” and “non-blended” after the blend end-point.
Such oscillations should not be an artifact of the calculation; rather,
they should be a function of constituent properties.
The metric selected to meet the criteria of agreement with target
concentration and a single value representing all blend concen-
trations was root mean square from nominal value (Eq. (1)). This
metric summarizes the difference between each predicted concen-
tration and its target value for all the components. A representative
RMSNV plot is shown in Fig. 4; in this figure it is observed that a
large RMSNV at early time points indicating inhomogeneous mix-
ture. As time elapsed and blending continued, RMSNV decreased
until it reached a plateau. A 95% CI was calculated based upon the
last 12 points to illustrate the rate of change of variability. Due to
the heterogeneity at initial blending process, 95% CIs were far away
from the threshold limit. With time, both CIs converged within
2–12% deviation from nominal, indicating that the blending pro-
cess had reached a desired degree of homogeneity (from a statistical
standpoint).

In the study, equal weight was used for each component when
RMSNV was calculated in order to illustrate the importance of mon-
itoring blending process based on all the constituents (Eq. (1)). In
practical use of RMSNV, the relative weight of each component may
be determined based upon manufacturing and regulatory require-
ments (Eq. (3)). For instance, the weights of excipients are expected
Fig. 4. Example for RMSNV plot for certain a blending experiment. Dots repre-
sented RMSNV at each sampling point. Solid curves represented 95% CI. Solid lines
represented 2% and 12% deviation from nominal value.
Fig. 5. The effect of window size selection on 95% CIs. The plots from the top to the
bottom represented the results using window size of 24, 12, 6 and 3 on a represen-
tative blending run. The upper three plots were offset for clarity.
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. (1) API prediction profile. (2) Moving-window standard deviation. (3) The multivariate
e difference of variance of end-point among replicates determined by different end-point
and upper quartile values. The whiskers are lines extending from each end of the boxes

ance of end-point determination among replicates across the whole
design matrix (Fig. 6). This indicates the improved robustness of
the multivariate method compared to other widely employed end-
point determination algorithms.

The enhanced robustness is attributed to the following proper-
ties of the multivariate model-based approach. First, the specificity
of multivariate model enhanced the capacity to capture individual
concentration variation, particularly in the case of spectrally sim-
ilar components such as LAC and MCC. It was observed from pure
component spectra that LAC was similar to MCC (Fig. 7). Since LAC
Fig. 6. Comparison of robustness of different end-point determination algorithms
model-based approach. Y-Axis was logarithmic transformed in order to highlight th
determination algorithms. The lines in the boxes are at the lower quartile, median,
to show the extent of the rest of the data.

profile of the blend. While it has been suggested that P or T values
would serve as a suitable metric to determine end-point, confi-
dence intervals have been observed to be more robust in end-point
determination in cases where blending variability at the end-point
was either comparatively small or large.

The threshold limit (2–12%) was selected based on the observed
blending process variation within the current design matrix. The
threshold limit may be restricted to a smaller range to require a
closer agreement of the target levels and variability under different
circumstances. However, the current system included a wide vari-
ety of target constituent levels and properties necessitating a wider
threshold for end-point determination.
The number of RMSNV points included in the window for calcu-
lation of CIs can affect the end-point determination. The window
should be as small as possible to allow a rapid response to process
changes and yet, of adequate duration to obtain a representa-
tive sample. A window size of twelve was utilized to perform the
calculation. Fig. 5 illustrates the effect on CIs of changing win-
dow size. Note that as the window size is increased the effective
CI is decreased; however, at window sizes greater than 12, the
decrease in CI is nominal. Thus, this was the smallest window that
demonstrated adequate sensitivity for end-point determination.
For reference algorithms, three as window size was used to cal-
culate spectral standard deviation for MVSD and relative standard
deviation for API predicted concentration. However, it was neces-
sary to smooth the results and a nine-point window was used for
that purpose. Thus, the total number of points for a given prediction
was 12 for both the reference and the proposed algorithm.

The proposed algorithm was compared to the reference algo-
rithms to assess stability of end-point determination and suitability
for use in the current system. Compared to end-point determined
by MVSD and API predicted concentration profile, the multivariate
model-based algorithm consistently demonstrated the lowest vari-
Fig. 7. Pure component spectra. Solid line (APAP); dashed line (LAC); dotted line
(MCC).
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Fig. 8. Effect of the number of principle component on observed end-point deter-
mination.

and MCC were the major constituents in the blending composition,
the MVSD was only sensitive to the variation of APAP due to its
unique spectral features compared to LAC and MCC. Thus, it was not
possible for MVSD to capture blending variation of LAC and MCC.
Although spectral preprocessing was able to enhance spectral fea-
tures of individual constituents at specific wavelengths, the mean
value of standard deviation across the wavelength range removed
the enhanced spectral difference at specific wavelengths. Second,
the MVSD generated a noisier signal across the wavelength range
compared to the multivariate model-based approach. Since the
approach was calibrated against concentration variation, specific
wavelength regions corresponding to chemical information was
enhanced in the regression vector, while noise-related wavelength
regions were suppressed.

Fig. 9. Effect of the number of principle component on RMSEC and RMSECV for
NIPLS calibration. Asterisk represented RMSEC, circle represented RMSECV.
Fig. 10. Effect of slope deviation of prediction on observed end-point determination.

Blend design point #8 was selected to demonstrate the effect of

model performance on end-point determination. Other blending
design points demonstrated similar trends (data not shown). It is
demonstrated in Fig. 8 that the variance of end-point determination
was dramatically decrease when more than two PCs were used. Fur-
ther, using one or two PCs caused the system to be under-modeled.
This trend was further confirmed in the difference of RMSEC and
RMSECV using only first two PCs compared to that using three or
more PCs (Fig. 9). Data from other blend design points indicate that
the use of an additional PC (total of four PCs) enhanced the ability
to capture concentration variation in the system. The additional PC
was required to account for the variance of each blending run in
the multi-dimensional space.

The effects of slope and bias deviations on blend end-point
determination were investigated. Figs. 10 and 11 demonstrate that
both slope and bias deviations increased the variance of end-point
determination, indicating that careful supervision of both slope
and bias is necessary in order to maintain the routine model per-
formance. Slope deviation confirmed a more asymmetric effect
on end-point determination compared to bias deviation. It can be
attributed to the following. In the current design matrix, LAC and

Fig. 11. Effect of bias deviation of prediction on observed end-point determination.
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MCC were observed to show inverse predicted concentration trend
with respect to time (e.g. Fig. 3). Since bias deviation gave each con-
stituent the same amount of deviation, possible bias deviation of
LAC can be offset by that of MCC. However, the slope deviation was
greater for the constituent with large predicted concentration com-
pared to the component with small predicted concentration; thus,
the blending end-point was likely driven by the constituent of large
predicted concentration. Additionally, a probability function was
calculated to characterize the stability after end-point was reached;
the number of RMSNV points within threshold limit after end-point
was divided by the total 120 RMSNV points (10 min interval). A
good blending run should reach the end-point as quickly as possi-
ble and possess consistent stability after end-point, with stability
probability value close to unity. As deviations were increased to 10%,
stability probability function decreased to a value smaller than 0.5
despite the fact that the blend was not changing. This deviation
caused, in effect, a false-positive test for demixing after end-point
was reached. Upon increasing the slope and bias deviation to 20%,
no end-point was detected. Although stability probability function
required data after end-point to determine the stability of a blend-
ing process, it could become one of promising metrics to study and
characterize blending variability at end-point during research and
development in order to select the “target” blending operation with
the optimal blending stability.

Performances of the top and side sensors were compared for
characterization of end-point and blending variability. RMSNVs
were corrected for measurement errors of each sensor on each
blending run by subtracting pure error from RMSNV. First, it was
observed in pair-wised t-test that the pure error determined by side
sensor was significantly larger than that of top sensor (P = 0.0109,
95% CI was 0.0011–0.0072). This can be attributed to the intrin-
sic properties of two spectrometers. Compared to the side sensor,
the top sensor had a stronger light source, a higher signal to noise
ratio and a larger interrogation volume. Second, a one-way ANOVA
demonstrated that certain blending design points had significantly
larger pure error compared to other designs (P = 1.7 × 10−5 for side
sensor, P = 2.1 × 10−5 for top sensor). Thus, individual pure error
for each blending run determined by each sensor was utilized to
remove the measurement error from RMSNVs before the t-test in
order to capture the original RMSNV information from the blending
processes.

After rescaling RMSNV, end-point determinations by the two

sensors were compared. A pair-wise t-test demonstrated that end-
points detected by top sensor were significantly longer than that
by side sensor (P = 0.0011, 95% CI was 3.4080–11.7360 min). Subse-
quently, mean and standard deviation of RMSNV at the end-point
were used to characterize the blending variability determined by
the two sensors. The pair-wise t-test additionally demonstrated
that both mean and standard deviation of RMSNV from top sen-
sor were significantly smaller than those from side sensor, which
also supported the smaller threshold limit for top sensor (−5 to
5%) compared to side sensor (−5 to 15%) as criteria to determine
end-points. The statistics were as follows: P = 1.6 × 10−7 and 95%
CI was −0.0243 to −0.0140 for mean RMSNV, P = 9.8 × 10−8 and
95% CI was −0.0096 to −0.0056 for standard deviation of RMSNV.
Considering the difference of end-point determination and vari-
ability characterization by two sensors, it indicated that blending
behavior at top surface differed significantly from the side wall
of the Bin-blender, requiring more time and reaching end-point
with smaller variability. The causal factors for different blending
behaviors at different locations are currently under investigation.
It is difficult to conclude that one sensor location is better than
the other since only two sensor locations were studied. But the
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results were similar to the paper published by Wightman et al., in
which the mixing patterns at internal cross-sections were demon-
strated to differ significantly from patterns observed at end walls
[23]. Thus, it can be concluded that observations at one blending
location may not be representative of the total powder blending
processes inside the Bin-blender. This clearly demonstrates the
advantage of employing process monitoring by NIR spectroscopy
at more than one location in order to capture the blending variance
sufficiently.

4. Conclusion

The algorithm of employing multivariate models to predict con-
stituent concentrations followed by RMSNV and two-tailed t-test
is a promising metric for monitoring powder blending. Use of
customized weighting factor in the metric allows different pro-
cess control strategies according to performance requirements of
manufacturing process and final solid dosage form. Compared to
widely employed end-point determination algorithms, the multi-
variate model-based algorithm demonstrated more robustness for
end-point determination by accounting for both constituent con-
centrations and variances.

The use of two differently located sensors demonstrated dif-
ferent blending behaviors, including greater blending variability
at side wall and longer blending time at top surface. This study
indicates the superiority of monitoring powder blending via NIR
spectroscopy at more than one location on the Bin-blender in order
to capture overall blending variation.
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